Int. J. Heat Mass Transfer. Vol. 24, No. 10, pp. 15771588, 1981
Printed in Great Britain

EFFECT OF PRESSURE STRESS WORK AND VISCOUS
DISSIPATION IN SOME NATURAL CONVECTION FLOWS*
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Abstract—A regular two-parameter perturbation analysis is presented here to study the effects of both
viscous dissipation and pressure stress on natural convection flows. Four different vertical flows have been
analyzed, those adjacent to an isothermal surface and uniform heat flux surface, a plane plume and flow
generated from a horizontal line energy source on a vertical adiabatic surface, or wall-plume. For high
gravity levels, stress work effects may be important for gases at very low temperatures, and for high Prandtl
number liquids. Significant changes in heat transfer and flow quantities are observed even at moderate values
of the perturbation parameters. For the entire range of Prandtl number values considered, the viscous
dissipation term is seen to inhibit heat transfer from the surface for heated upward flows. The pressure term
enhances heat transfer from the surface for lower Prandtl numbers. However, this effect is seen to reverse at Pr
= 100, for both the isothermal and uniform flux surfaces. It is observed that viscous dissipation effects on
heat transfer are much smaller than those due to the pressure stress, for many practical circumstances.
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NOMENCLATURE
b, ¢, d, defined in equations (2a)-(2c);
Cor specific heat of fluid;

f nondimensional stream function;

Gr,, local Grashof number in the absence of
viscous dissipation and the pressure term
= gBx (to—to)o/v?;

Gr., actual local Grashof number =
gpx>(t,—t, )V

g acceleration due to gravity;

h, local heat transfer coefficient;

k., thermal conductivity of fluid;

M, momentum flux in the x-direction;

m, mass flow rate per unit width of surface;

N.n defined in equations (2a)—(2c);

Nu,, local Nusselt number, =hx/k;

N, heat transfer parameter,
= ) Nu/(Gr)'*;

Q. total heat convected downstream ;

q", surface heat flux;

T, film temperature at which all the fluid
properties are calculated ;

t, temperature;

u, vertical velocity component;

v, horizontal velocity component;

X, vertical coordinate;

v, horizontal coordinate.

Greek symbols
B, coefficient of thermal expansion;
8, perturbation parameter characterizing
viscous dissipation, =gfx/Cp;

* This work was performed when the authors were at the
State University of New York at Buffalo, Amherst, NY 14260,
USA.
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Ay perturbation parameter characterizing
pressure stress work, =(gfx/C,) T/At

", nondimensional horizontal distance;

v, kinematic viscosity of fluid;

2 density;

o, temperature excess ratio,
= (-t )t—15);

v, stream function;

T, shear stress.

Subscripts

0 refers to conditions at x=o0;

x, refers to conditions in ambient fluid ;

0, refers to conditions when 4 and « are zero.

INTRODUCTION

IN ALMosT all natural convection studies, the viscous
dissipation and pressure stress terms are neglected in
the energy equation. This is a valid approximation at
an ambient temperature of 300 K at 1 atm pressure
and at terrestrial gravity, for most gases and low and
moderate Prandtl number liquids. However for high
gravity, such as in gas turbine blade cooling appli-
cations, where the intensity of the body force may be as
large as 10* g, viscous dissipation and pressure stress
effects may affect transport even at small downstream
distances from the leading edge. Also, the effects on
transport may be quite significant at low temperatures
for gases and for high Prandtl number liquids.
Gebhart [1] analyzed the effects of viscous
dissipation only, using a regular perturbation analysis.
All the previous studies concerning viscous dissipation
in natural convection were summarized. The effect of
viscous dissipation is obtained in terms of the quantity
gBx/c,. A fifth-order coupled set of ordinary
differential equations is obtained for the first-order
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corrections in velocity and temperature, due to the
viscous dissipation effect. Solutions were obtained for
various Prandtl numbers ranging from 1072 to 10%.

Gebhart and Mollendorf [2] consider viscous
dissipation effects for an exponentially varying surface
temperature. The appropriate parameter for viscous
dissipation here was obtained as gfi/mc, where m is the
e-folding distance for the surface temperature
variation. A similar set of equations was obtained for
the nondimensional velocity and temperature. The
solutions were obtained for various Prandtl numbers.
The effect of viscous dissipation on transport was seen
to increase with Prandtl number.

Roy generalized the isothermal [3] and uniform
surface heat flux [4] results of Gebhart for the case of
asymptotically large Prandtl number. In another note
[5] Roy also generalized the results of Gebhart and
Mollendorf, for asymptotically large Prandtl number.
Soundalgekar [6] considered viscous dissipation
effects on unsteady natural convection flow past an
infinite vertical porous plate with constant suction.
Soundalgekar and Pop [7] considered the same
problem with non-uniform suction. In follow-up
papers [8-12] the viscous dissipation term was
retained in the energy equation, for several kinds of
transient natural convection. In [13] Soundalgekar
considered the effect of mass transfer on free convective
flow of an incompressible, dissipative, viscous fluid
past an infinite vertical porous plate with constant
suction. Effects of viscous dissipation and pressure
stress work on mixed convection flow were studied by
Soundalgekar and Takhar [14]. The local similarity
approach was followed and quasi-ordinary differential
equations were obtained for the nondimensional
velocity and temperature. These were numerically
solved.

Kuiken [15] was the first to consider the effect of
pressure stress work in natural convection in gases.
The viscous dissipation effect was neglected, however.
The set of equations was solved for the case of surface
temperature linearly varying with x, for which a
similar solution exists. The possible importance of
including pressure stress work in plume flow analysis,
to describe the outer regions of the plume where the
value of (t,—t.) is very small, was pointed out.

Ackroyd [16] analyzed stress work and viscous
dissipation effects in laminar flat plate natural
convection. It was established that pressure work
effects are generally more important both for gases
and liquids. Property variations within the boundary
layer and also outside the boundary layer were consid-
ered. Two different kinds of ambient medium prop-
erty conditions were considered, a constant temper-
ature fluid and isentropic stratification. The surface
temperature variations in the two conditions were,
to(x)—t,(x)=constant and t,=constant, re-
spectively (see the notation). Expansions were made
in terms of a perturbation parameter based upon
c,/gp—the length scale for the viscous dissipation
term. However, as we shall see later, the possible x
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dependence of At gives rise in general, to a different
length scale for the pressure stress work term.
Perturbation solutions were obtained for the
nondimensionalized temperature and  velocity
functions.

Turcotte et al. [17] have considered the effect of
viscous dissipation on Bénard convection. Hewitt,
McKenzie and Weiss [18] examined the energetics of
convection in a compressible fluid. They refer to
models of convection in the earth’s mantle and
establish an upper bound to the rate of ohmic heating
in the earth’s core.

Brown [19], in an integral analysis, examines the
relative magnitude of viscous dissipation and pressure
stress effects in natural convection over an isothermal
vertical flat plate. The von-Karman approximate
integral technique has been used with constant fluid
properties, both within and out of the boundary layer.
Because of a sign error in the substitution for dp/dx,
both the pressure stress term and viscous dissipation
were found to decrease heat transfer, for heated
upward flows.

Gray and Giorgini [20] discuss the validity of the
Boussinesq approximation for liquids and gases.
Allowance is made for the variation of all properties
with temperature and pressure and the explicit ranges
where the Boussinesq approximation is valid are found.
The fluid properties p, ¢, i, f,and k are assumed linear
functions of temperature and pressure. These
approximations are substituted into the full set of
equations, which are then nondimensionalized. A set
of conditions is obtained, for the Boussinesq
approximation to be valid. The following two
additional conditions are put on the length and
temperature difference scales, to justify omitting the
effects of viscous dissipation and pressure stress work
in the energy equation, respectively

BgLT, <
cm(At)

0.1

and

BogL

CP(»

Pr < 0.1

where the subscript o implies some reference state and
L is the length scale. Examples have been given for
water and air, at T, = 15°C and P, = 1 atm. It has
been shown that the pressure stress term cannot be
neglected in many circumstances. A low value of At
will make this effect quite important. The viscous
dissipation effect is almost always unimportant for
water. For air however, it can be inferred that, at low
temperatures of SO0K or so, the viscous dissipation
effects must be included. The effects arise at large
values of x for the terrestrial intensity of gravity. Also,
it may be argued from the second condition above, that
for liguids with higher Prandtl numbers than water,
viscous dissipation may have to be considered. From
[20] it can be concluded that for gases at very low
reference temperatures and also for high Prandt!
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number liquids, the viscous dissipation and pressure
stress effects can actually become more important than
the fluid property variations, both within the
boundary layer and in the exterior fluid. The
Boussinesq approximations can be invoked then.
Clearly, for high values of g, such as in rotating
systems, both the viscous dissipation and pressure
stress effects will be important even at lower values
of x.

The following analysis applies particularly to gases
at low temperature levels and to high Prandtl number
liquids. Constant fluid properties within the boundary
layer and in the ambient medium have been assumed.
The Boussinesq approximations have been used. Two
different perturbation parameters arise—e¢ for the
viscous dissipation effect and / for the pressure stress
term effect. The equations are determined for a power
law variation of the surface temperature. Results have
been obtained for four representative kinds of
downstream temperature variation. These are—an
isothermal surface, a surface dissipating constant heat
flux, a plane plume arising from a concentrated
horizontal thermal source and an adiabatic surface
with a concentrated energy source along the leading
edge. The only differences in the formulation for the
above four circumstances arise in the boundary
conditions and in the coefficients in the relevant
differential equations. Expressions for the heat transfer
and drag quantities have been found. The results have
been obtained for the Prandtl nurmber values of 0.733,
10, and 100.

FORMULATION

This formulation assumes steady, two-dimensional
{plane) wvertical natural convection flow and
incorporates the Boussinesq and boundary layer
assumptions. The fluid properties are assumed to be
constant, as evaluated at some reference temperature.
Viscous dissipation and the hydrostatic pressure terms
have been retained in the energy equation. Externally
imposed volumetric energy sources are assumed
absent. This results in the following governing
equations (see for example [21]):

du + oy —0 (1a)
ox 5 B a
du du &u
— — =y t—1, ib
“ax“L”ay v6y2+gﬁ( ) (1b)
dt otk &%

BT dp, u (514)2
= — g A a2 (1c
"ax+”ay pcl,ﬁy2 pcpudx+pcp dy (o)

where x is taken to be in the direction of the flow i.e.
vertically up from the active leading edge for heated
upward flows and vertically down for cooled
downward flows. The temperature of quiescent
ambient fluid, ¢, at large values of y, is taken to be
constant.

The following generalizations are introduced to
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obtain the equations in terms of generalized stream
and temperature functions f and ¢

n(x, y) = yblx), ¥ = ve(x)f(n, x) (2a)

B, x) = 1=

(to_’tx)o, ([o_tx)o = d(x) = Nx"

(2b)
gﬁx3(to_ [oo) 1

1/4
- 4(6;"} (2¢)

where (t,—t.)p is the downstream temperature
difference (along the x-axis) which would result
without the inclusion of the viscous dissipation and
hydrostatic pressure effects, that is for both £ and 2
zero. Gr is related to the actual physical local Grashof
number Gr, by Gr, = Gr,$(0).

Expansions for the stream and temperature
functions f (1, x) and ¢y, x) are postulated as:

fln, x) = £+ &) fi(n) + A)F ) + [e0)]2 ()
+ [A)PFan) + e(x) 200G + ... (3)

&, x)
= ¢, + &x)P:(n) + AUx) P )+ [a(x)]? dy(n)

+ [200]? @,(n) + sx)AU)To(n) + ... (4)

To retain both the viscous dissipation and
hydrostatic pressure effects to the first order, &(x) and
A(x) are chosen as

4g8x

&(x) = (5a)
CP
_4gpT
Mx) = Ne, xtTn (5b}

The choice of &(x) is the same as made by Gebhart [ 1].
The quantity A(x) is due to the hydrostatic pressure
effect. Note that 1 is a constant for n = 1. The two
quantities are seen to be simply related as

; T

L(x) = &(x) i
For most practical circumstances T/d(x) is large or at
least O(1). Hence A(x) may not be neglected in an
investigation of the effect of &(x). From 5(a) and (b), x
may be eliminated to obtain

n AL ~n)
-
T \448

for heated upward flows. For cooled flows, in the
downward direction, the pressure stress causes
compression and hence heating of the fluid for § > 0.
This augments heat transfer from the surface. Viscous
dissipation also acts to increase heat transfer from
surface. Hence in (5d), 2 is always positive. However, &
has to be replaced by — ¢, for cooled downward flows.
The formulation remains the same except that N is
replaced by —N and g by —g.

(5¢)

(5d)
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Here we consider terms only up to and including the
first order. The expansions for f and ¢ are truncated
after the first order and 4 and ¢ are treated as separate
parameters. This has been done to study the inde-
pendent effect of each parameter on the velocity and
temperature fields. Greater accuracy for specific cir-
cumstances may be obtained by retaining higher order
terms in (3) and (4). When higher orders terms must be
considered, it is convenient to substitute (5d) into (3)
and (4), to eliminate «(x) in favor of A(x). Depending
upon the particular choice of n, (3) and (4) can then be
arranged in ascending powers of of /.

Substituting (3) and (4), into (1b) and (1c), with the
generalizations in (2), the equations for f, ¢, fy, ¢4, F,
and @, are determined for any value of n

o =2n+0)f2+ (+3)fofy + ¢, =0 (6a)
¢o + Prl(n+3)fd, —4nfo o] =0 (6b)
Y DS+ (1)L
—4n+2)fof1+ ¢ =0
1+ Prl(n+Nfid, + (n+3)f,0)

—4n+1)f ¢y — nf o + (f0))] =0 (Tb)

F{ + (T=3n)fo Fy + (n+3)fFi~8f, Fi+ ®, =0
(8a)

(7a)

@] + Pr{(7=3n) F 1, + (n+3)f, @ — 41, ®,
—4nFio, —fo] =0. (8b)

Equations (7a) and (7b) are the same as presented in
the Appendix of [2]. A sign error in (7b), which arose in
the earlier work, has been corrected.

The relevant boundary conditions, or imposed
conditionsat y = 0 and as y — 7, are as follows. The
primes indicate differentiation with respect to #.

The boundary conditions for the zeroth-order
equations are taken to be those that would arise in the
absence of viscous dissipation and pressure stress
effects. The boundary conditions for the first order
terms are then found by imposing reasonable require-
ments on the velocity and temperature functions
fand ¢, and their derivatives at =0 and at n— .

(a) Isothermal surface with horizontal leading edge

Jl0) = 11(0) = Fi(0) = fo(0) = f1(0) = F,(0) = 0
folr)=fi(=)=F(x)=0

1-¢,(0) = ¢,(0) = 0,(0) =0

$o(7) = ¢1(7) = ®y(%) = 0.

(b) Constant flux surface with horizontal leading
edge

fo©) =110) = F1(0) = £(0) = 1(0) = F,(0) = 0
Jolx) =fi(=)=Fi(x)=0

1—¢,4(0) = ¢1(0) = @1(0) = 0

Go() = ¢1(%) = Oy(%) = 0.

(c) Unbounded plane plume, rising from a horizon-
tal thermal source at x = 0
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£:0) = £1(0) = F1(0) = £5(0) = f1(0) = F1(0) = 0
folx)=filx)=Fi(x)=0
1-¢,(0) = ¢¢(0) = ¢1(0) =
¢1(%) = ®y(=) = 0.

(d) Adiabatic surface with a concentrated heat
source along the horizontal leading edge, a wall plume

Jo0) = £1(0) = F1(0) = f4(0) = f1(0) = F1(0) =0
foz)=fi(x)=Fil=x) =0
1-¢4(0) = ¢c(0) = ¢1(0) =
$1(x) =@y (=) =0.

10) =0

10y =0

The value of nin (2b), d = (t,—t,)o = Nx",depends
only on the zeroth-order solution. For the isothermal
condition n = 0, and, therefore, (t,—1,), is given.
Thus, the ¢,(0), ¢,(0), ... and ®,(0), ®,(0), ... are all
zero and the temperature at y = 0 does not depend on
&(x) and A(x). The values of n for the other three flow
conditions are determined by calculating the value of
Qo(x), the total heat convected in the flow at any
downstream location x, considering only zeroth-order
terms.

The energy equation (1c), in the absence of viscous
dissipation and pressure stress terms, is integrated at a
given x to give

Qo(x) =f pegolt 1, )o dy =J gy dx.
0 0
The subscript 0 emphasizes that viscous dissipation
and pressure stress effects are not being considered.
Using generalizations in (2), (3), and (4)

Qolx) = J " pegtolt — 1, )o dy = pveyed f poSodn

0 0
x x(3+5n),4

Q,(x) must increase linearly with x for the imposed
uniform surface heat flux condition (b). It must be
independent of x for the adiabatic flows, (c) and (d).
Therefore,

n,=0 (9a)
n, = 1/5 (9b)
n, = ng = —3/5. (9¢)

The effects of viscous dissipation and the pressure
terms act to generate thermal energy in the flow field.
Even in the plume flows, the total convected energy
does change downstream of x = 0. Including the
zeroth- and first-order terms, Q(x) is, in general

0(x) = pvc,cd{ f s udnat)
x f (s 61 +11 60 dn +2(x)
0

Xf (fo®+Fy ¢o)d11:,- (10)
0
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The second and third integrals in (10) represent the
energy contributions of the viscous dissipation and the
pressure terms, respectively, to the total convected
energy at location x. The dissipation term in the energy
equation (10) is a volumetric source term. The pressure
term occurs as a volumetric sink term since dp,/dx =
— pg, for upward, or heated flows. By integrating the
first order energy equations (7b) and (8b}) at any x, for
conditions b, ¢, and d, the last two integrals in (10) are
evaluated and Q(x) is again written

x ) , _ 1 A ”
I, = f (fodutfid)dn = omoey f (faydn
(11)
x 1
I, = ( (5@ + Figg)dn = — o= [6(=)] (12)

o

Q(x) = pvcpcd[IQ” +ox) 1, +4(x) IQ,] (13)

where

I, = f $of5dn.

The local total downstream mass flow rate, per unit
width, is

m= J ‘pu dy = vpe [fo(5 )+ a(x) f1 (% )+ AUx) F ()]

0

(14)

The local x-direction momentum flux is given by

M(x) = Jw putdy = pvzczbj‘j (f)*dn

(1] V]
= pvzczb[IM°+ () Iy +Ax) Iy,
(15)
where

Iy = f (f:,)ldn,IM,=f oufidy

0 [}

and

I, = J 2 Fydn.
0

From (5a) and (5b) it is seen that &(x) is a function of
x for all values of n, as is A(x) for n # 1, which
corresponds to a linearly varying surface temperature.
For all the surface conditions considered here, the
coordinate expansions (3) and (4) apply. For all four
conditions, the exponent of x is equal to or greater than
zero in all terms in (5a) and (5b). Hence both
expansions are valid for small x. Also, the effect of both
the viscous dissipation and pressure terms increases
with increasing x.

For surface conditions in (a), (b) and (d) above, the
shear stress at the surface, retaining terms up to first
order, is given by

1(x) = pv2ch? [ f5(0)+ e(x)f1(0)+ A(x) F{(0)].(16)

Also, the surface heat flux, ¢”(x), and local Nusselt

number, Nu,, are determined as
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ot
q// — _k__

5|, = [-9O]kb

¥=0

/4
- [—¢'(0)]"(’°;—”)°[%]1 (17)

4
Nux:éﬁzlﬁ(i>
k (to—t1)0 k

[¢©)] (Gr)'*

= — == 18
[6@]* 2 e
where
$(0)=4(0)+ &(x) ¢4 (0)+ A(x) 1 (0) +. ..
t—t,
N (to—tx,)o (lga)
and
Gry, = Gr ¢(0). (19b)
Defining N’
Nu, \/2 .
Gy
(18) is rewritten as
. [=¢10)]
M= oo 20
CALCULATIONS

The zeroth-order equations (6a) and (6b), with
suitable boundary conditions and the appropriate
value of n for conditions (a), (b) and (c) are written in
terms of the formulation of Gebhart [21]. The zeroth
order formulation for condition (d) is that of Jaluria
and Gebhart [22]. This latter is the flow above a
horizontal line source on an adiabatic vertical surface.

Equations (6a) through (8b), with the relevant
boundary conditions (a)—(d) were solved numerically
for each of the four conditions in (a), (b), (¢) and (d), for
Pr = 0.733, 10 and 100. Hamming’s predictor cor-
rector scheme was used for integration. Initial guesses
were corrected using a Taylor series expansion, evalu-
ated at 7,4, for the distant boundary conditions.
The numerical integration scheme employed auto-
matic local subdivision of the prescribed integration
interval, to achieve the desired accuracy. An accuracy
criterion of 107 !° was used on the distant boundary
conditions. The value 4.4, Was increased to as large as
55 to ensure that all results were unvarying up to the
fifth digit beyond the decimal point, with further
increase in #],4,,. The Prandtl numbers 0f0.733, 10 and
100 represent common gases and many liquids.

RESULTS

The numerical results of the perturbation analysis
for the four conditions are collected in Table 1, for the
three Prandtl number values. Figure 1 shows f, ¢0.f,
¢4, F},and ®,, for the isothermal surface condition (a),
with Pr = 0.733. The correction function due to



ENDRA JOSHI and BENJAMIN GEBHART

Yo

1582

686100 101200
6¥160°0 9L901°0
888£€0 8LOESO

up (%) ; "0

0£1200 L6200
L9TLOO LBESTO
Ls9ro 787650

o,
up A91) ; 0y

86111°0

$6880°0

1€L21°0~
0.0

899570

€PLITO~

SE6T1°0~
0 e

Wwosto—
0r861°0—
Or881°0—

o'

6T581'0~—
168020~
Y1810

oo

9.860°0

189800

86£90°0
)'e

STH9V0

YILETO

€8CL0°0
)¢

8600t°0
979¢€0
1zcTo

0)'¢

95100
¥86£0°0
0Svv0'0

w)'e

YP8SHPT —

WIE —

SPOLSO—
(0)°¢

LETETT—

86891°1 —~

16L05°0—
(09

ISLp0°0—
104200~
6LLT00—

N?N

6£6£00—
006200—
990£00—

NE\

8GLES'T

1€22€°0~

1L€80°0—
()4

£8059°7 —

ZP88T0—

9%0L0'0—
(=)'d

$6000°0
81000
LTE10°0

«EN

‘

££€00°0
789000
$6010°0

wEN

L9600°0
668¥0°0
16897°0

aEN

$8050°0
SELTIO
00S0v°0

kil
Wy

£5700°0
16£000
LLSO0'0

(=)

$61000

£1£000

607000
()Y

90L6L'0—
LOYYT0—
660¥0°0—

()

£20LT 0~
67890°0—
6L5€0°0—

(g

SYYTT'0

61LEE0

L6EVSO
(=)

Y99ET'0

£T6VTO0

PEPES0
(=¥

815000
128000
917100

()Y

H0L000
88000
$8600°0

()

8Eve10—

78660°0—

68980°0—
{0,

To9vI0—

0LLLOG—

0SLEOO—
(04

WIzo
LSEBED
39€L8°0

=¥/
£$79€°0

961050
8£916°0

(=)

T0P10— LIELOO 6L9LE0 001
09P110— 1Z€01°0 090190 01
66501°0— 08501°0 £TYL60 £EL°0
{ond oS (0" 4
§/g~ =u swnid jrem suejd (p}
SPL900— 108000 990520 001
8P0Y00— 821100 S6EI0 01
T6LT00— 896000 LTLSYO  €ELO
0’4 oL 0% id
¢/g— = u sumyd sueid (9)
68L10°0 899¢7°0 001
96$20°0 £056£°0 o1
906200 15L£9°0 €EL0
%S 0%f 4d
¢/1=u aoe)ms xny uojury (q)
125000 691570 001
90L000 0T61Y0 01
$8500°0 81,90 £EL°O
ons 0)S, ad

(= U 20BRJINS [RILISYIOS] (B)

SUONIPUOD 3DBJINS PUR SIBQUINU [)PuBLg SNOLIEA 10§ sonpuenb wodsuel) pue moy parenoje))

REULAS



Pressure stress work and viscous dissipation in convection flows

viscous dissipation is seen to be smaller in magnitude
than that due to the pressure stress term. Also, it does
not extend as far out into the boundary region. The
governing equations, for f; and ¢, and the boundary
conditions for this condition, are the same as in
Gebhart’s [1] analysis for viscous dissipation. How-
ever, for these latter solutions, the approximation
= 0 was made to simplify the calculations. This
eliminates equation (7a) completely. Further, in (7b)
two terms drop out, making it simpler to solve. The
resulting value for ¢ (0) is 5% different from the more
accurate results obtained here, for Pr = 100. None of
the other Prandt! number values used here are com-
mon to both analyses.

It is seen in Table 1 that, for both Pr = 0.733 and
10, @4(0) is negative. For heated upward flows this
means that the pressure stress effect increases the heat
transfer from the surface. However, this effect is
reversed at Pr = 100. Looked at in another way, for Pr
= 0.733 and 10, @, is negative over the boundary
region and for Pr = 100 it is positive in the region 0 <
n < 0.5 and negative for n 2 0.5. Thus, the pressure
term actually does inhibit heat transfer from the
surface in a heated upward flow. This is explained as
the effect of the simultaneous interplay of two factors;
on the one hand, there is a downstream tendency of
fluid cooling due to its expansion. On the other hand,
there is a decrease in the heat convected, due to the
reduction in the velocity level resulting from the re-
duced buoyancy force. The latter effect becomes the
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dominant one near the surface, at higher Prandtl
numbers. The pressure term then decreases surface
heat transfer and actually causes relative local heating
of the fluid.

Figure 2 presents f, ¢, f1, ¢4, F} and @, for the
uniform imposed flux condition, with Pr = 0.733. Here
¢, is greater in magnitude and extends out further
than for the isothermal condition. However, f' and F,
are still small. A weak reversal in [ is observed for
nz2

The effect of 4 and ¢ on the heat transfer parameter
N’ in (20), is shown in Fig. 3, for both the isothermal
and uniform flux conditions, for |[N|/T = 0.1. As
explained later, physical considerations limit the per-
missible values of 4 and ¢ within a range. The region
between 4 and A’ in Fig. 3 denotes the region of
applicability of the present analysis. The viscous
dissipation effect always generates frictional heat and
acts as a source term, both for heated upflow or cooled
downflow. The pressure stress term however becomes
an energy source term for cooled downward flows,
since dp,/dx > 0. The fluid is actually being com-
pressed and thereby warmed. In (5b) the ratio g/N
remains positive both for heated upflow and cooled
downflow. Therefore, in Fig. 3, / is always positive.
Also, ¢ is positive for heated upflow and negative for
cooled downflow, because of the change in the sign of
g. The value of Z for given ¢ is obtained from (5d). For
heated upflow (¢, — t,)g = d > 0, N > 0. For cooled
downflow N < 0. As mentioned earlier, x always

FIG. 1. Temperature and velocity functions for the isothermal condition (a) with Pr = 0.733, ¢, 61, @1, 0. f 1
and Fi.
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flux (- ——) surface. [N|/T = 0.1 has been assumed for all the curves. The region between 4 and A’ gives the
range of validity of results without encountering f(»«) < 0.



Pressure stress work and viscous dissipation in convection flows

remains positive. Figure 3 indicates that, for Pr
0.733 and 10, increasing the value of ¢ from 0 in either
direction, increases N’ for both the isothermal and
uniform flux condition. For example, for ¢ = 0.08, 2 =
0.8 and Pr = 10, N' is seen to increase by 13.7%; for
isothermal surface and 8.6%, for constant flux surface,
over its value at ¢ = 0. For Pr = 100 the trend in the
variation of N’ changes, due to the change in sign of
®,(0) and ®,(0) for the two surface conditions,
respectively.

Results in Table 1 indicate that the value of — F; ()
rises very sharply as Pr is increased. The boundary
layer thickness §(x) must increase with x, from é = O at
the leading edge. For this to be true, fluid must be
entrained from the ambient and v(x, ) < 0, which in
the transformed variables implies that f(>) > 0. The
conditions for f () > 0,for Pr = 100and |[N|/T = 0.1
are calculated to be 2 < 0.083 and 2 < 0.068, for the
isothermal and uniform flux conditions for heated
upflow. Thus, pressure stress effects become quite
significant at high Prandtl number. Similar limits
could be obtained for each Prandtl number and value
of the parameter |N|/T. It is also noted that, since ¢ is
typically much smaller than 4, the pressure stress term
influences heat transfer much more than does viscous
dissipation.

Figure 4 shows [, ¢, /1, ¢, F}, and @, for the plane
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plume with Pr = 0.733. Again, the correction due to
the pressure term is greater than that due to dissi-
pation. As for the uniform flux condition, there is a
weak reversal in ) for 5 >2.25. Table 1 indicates that
®,(0) is less for Pr = 100 than for Pr = 10. This is
again attributed to the large decrease in velocity level,
the decrease in the convected energy in the plume, for a
higher Prandtl number. Nonzero values of A and «
produced significant changes in the velocity and
temperature at the plume centerline. This is shown in
Fig. 5. The effect of increasing Prandtl number on
¢,(0), seen in Table 1, is a decrease. This trend is not
observed for the other three conditions.

The solutions for the wall plume are shown in Fig. 6,
for Pr = 0.733. The values of ¢, and f) are seen to be
larger for this than for the previous three conditions.
The importance of the presence of a surface, in making
viscous dissipation appreciable, is seen by comparing
the wall plume values of ¢,(0), with that for an un-
bounded plane plume (see Table 1). It is clear that
the presence of the surface shear enhances the fric-
tional heating effect considerably. The viscous dissi-
pation corrections in this condition, are of the same
magnitude as the corrections due to the pressure term.
As for the uniform flux surface and the plane plume, a
reversal in f| is observed for 2 1.7. A very small
reversal in F is observed for 24 < n < 3.

|

2
K

FiG. 4. Temperature and velocity functions for the plane plume (c) with Pr = 0.733, ¢, ¢, @y, f0, £, and F.
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CONCLUSION

This analysis considers both the viscous dissipation
and pressure stress work for various types of surface
temperature variations, in a unified manner. For the
case of high gravity, stress work effects may be
important for gases at low temperatures and for high
Prandtl number liquids. This analysis provides the
correct estimate of heat transfer and fluid flow quan-
tities for such circumstances. Four representative
surface conditions have been considered. The effects
have been studied for three different Prandtl numbers
for each surface condition. Viscous dissipation and
pressure stress effects have been retained as first order
effects. The resulting three sets of coupled fifth-order
ordinary differential equations have been solved
numerically. It is observed that the pressure stress term
has a much greater effect than viscous dissipation, on
heat transfer, for all the four surface conditions
analyzed. Significant effects on flow and heat transfer
were found even for moderate values of s and 4. These
effects are seen to be greatest for the two plume flows.
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EFFET DE LA PRESSION ET DE LA DISSIPATION VISQUEUSE DANS QUELQUES
ECOULEMENTS DE CONVECTION NATURELLE

Résumé—On présente une analyse de perturbation a deux paramétres pour étudier en méme temps les effets
de la dissipation visqueuse et de la pression sur la convection naturelle. On considére quatre écoulements
verticaux, ceux adjacents a une surface isotherme et 4 une surface a flux uniforme, un panache plan, et un
écoulement issu d'une source d’énergie linéaire horizontale sur une surface adiabatique verticale, ou panache
pariétal. Pour des niveaux de pesanteur élevés, I'effet du travail des tensions peut étre important pour les gaz a
des températures trés basses et pour les liquides a grand nombre de Prandtl. On observe des changements
sensibles dans le transfert de chaleur et les débits de fluide, méme a des valeurs modérées du paramétre de
perturbation. Pour le domaine entier du nombre de Prandtl considéré, le terme de dissipation visqueuse
freine le transfert thermique a la surface, pour les écoulements ascendants. Le terme de pression accroit le
transfert thermique pour les nombres de Prandtl faibles. Néanmoins cet effet se renverse a Pr = 100, a la fois
pour les surfaces isothermes ou a flux constant. On constate que l'effet de la dissipation visqueuse sur le
transfert thermique est plus faible que celui de la pression dans beaucoup de circonstances pratiques.
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DER EINFLUSS DER DRUCKARBEIT UND DER VISKOSEN DISSIPATION
AUF EINIGE NATURLICHE KONVEKTIONSSTROMUNGEN

Zusammenfassung—Es wird hier eine regulire zweiparametrige Storungsanalyse dargestellt, um den Einflul
sowohl der viskosen Dissipation als auch der Druckarbeit auf natiirliche Konvektionsstromungen zu
untersuchen. Vier verschiedene senkrechte Strdmungen werden untersucht, anliegende Strémungen an einer
isothermen und an einer Fliche mit konstanter Wirmestromdichte, eine ebene Auftriebsstromung und eine
Stromung, die von einer waagerechten linienformigen Energiequelle an einer senkrechten adiabaten Wand
ausgeht, eine sogenannte Wandauftriebsstromung. Bei hohen Werten der Schwerkraft ist die Druckarbeit fir
Gase bei sehr niedrigen Temperaturen und fiir Fliissigkeiten mit groBen Prandtl-Zahlen von Bedeutung.
Signifikante Anderungen der Wirmeiibertragung und der StromungsgroBen werden sogar bei miBigen
Werten des Storungsparameters beobachtet. Fiir den gesamten Bereich der untersuchten Prandtl-Zahlen
erkennt man, dal} der viskose Dissipationsterm die Wirmeiibertragung von der Wand bei beheizten
Aufwirtsstromungen behindert. Der Druckterm begiinstigt die Warmeiibertragung von der Wand bei
kleinen Prandtl-Zahlen. Es zeigt sich jedoch, daB sich dieser Effekt bei Pr = 100 umkehrt, und zwar sowohl
bei isothermen Flidchen als auch bei Fldchen mit konstanter Wirmestromdichte. Es wird beobachtet, dal3
viskose Dissipationseinfliisse auf die Wirmelibertragung in vielen praktischen Fillen sehr viel geringer als
die Einflusse der Druckarbeit sind.

BJIIMAHUE PABOTHI YIIPYIMX HANPAXKEHWUN U BA3ZKOWU JUCCUIIALIMHN
HA HEKOTOPBIE THUIbl ECTECTBEHHOKOHBEKTHUBHbIX TEUEHUN

ARHOTauHa —— C NOMOILUBIO ABYXIAPAMETPUHECKOIO METOAA BO3MYLICHUA MCCIIEAYET1Cs BAHSHUE BA3KOM
JMCCHMIALUMH M HOPMASIbHBIX HAlNpPSXEHUH Ha €CTECTBEHHOKOHBEKTMBHOE TedeHue. AHaM3MpyeTcs
YETHIPE BHIAa BOCXOASALIMX [OTOKOB: Y H30TEPMHUECKON 110BEPXHOCTH, Y TIOBEPXHOCTH ¢ 110CTOSH-
HBIM TEILTOBbIM [MOTOKOM, MJ10CKas CTPYSl ¥ NIOTOK OT TOPH3OHTAILHOIO JMHEAHOTO HCTOYHMKA Ten la.
PACIIONIOKEHHOTO HA BEPTHUKANBHOH aMabAaTHYECKOH NOBEPXHOCTH. WM BOCXO,Islldst CTpys BOJIW3M
cTeHku. [1pu DOMBILNX 3IHAYEHUAX CHIIBI THXKECTH padoTa HANPAKEHUH MOXKET OKa3bIBATH CYLUECTBEH-
HOE BAMNHHE Ha TEUEHHE [a3oB NPH OYEHb HHU3KUX TEMOEPATYPAX W KHIAKOCTEH ¢ BOJbIIMM 4HC.IOM
MMpanarng. [Jaxe npu HeOONbIINX 3HAMEHUAX TAPAMETPa BO3IMYLUEHHA Habito1atoTes 60ablike WiMe-
HEHHsl B MJIOTHOCTH TEMJIOBOrO NOTOKA M KapruHe TedeHus. [loka3aHo. 410 B ciyvdae HArpeBAEMBIX
BOCXOASUINX MOTOKOB BO BCEM [MAIIA30HE PACCMATPHBAEMBIX 3HaveHuA yucaa [Mpanaris ciaraemoe.
OMUCBHIBAIOLLEE BA3KYIO AMCCHIIALMIO, YUMTBIBAET BEJHMHHY TEILIOBOTO NOTOKA OT 11oBepxHocTH. [pu
60jlee HU3KHMX 3HauCHHAX 4uciaa [1paHATAs NaBIEHHE OKa3bIBAET MHTEHCHMUUMPYlOUlCE BO3ICHCTBHE
Ha Tenonepesoc ot nosepxHoctH. Oanako npu Pr = 100 HabnonaeTCs NPOTHBOIOMOKHBIA Hrpex
K4K /1] M30TEPMHYECKMX, TdK ¥ PABHOMEPHO HarpeBaeMblix nosepxHocreit. Haisieno. 4io B 601b-
WHHCTBE 1PAKTHUIECKH BAKHBIX CY4deB BIAHSHHE HOPMUAIIbHBIX HAIIPSKEHHH HA T@ILIONEPEHOC HAMHOTO
IPEBOCXOIMT BIIMSIHUE BAIKOM JAMCCHIIAIINM.



